

Early Level 1b evaluation based on HIRS experience

Larry McMillin
Climate Research and Applications Division
National Environmental Satellite, Data, and
Information Service
Washington, D.C.

Larry.McMillin@noaa.gov

L.M. McMillin NOAA/NESDIS/ORA

Current Tasks

- Main Efforts Since Last Meeting
 - Supplement radiosonde information to complete a profile
 - This means adding the unknown data not data from other truth
 - Put the team match files in our data base
 - We are doing a match but want the official team version
- Radiosonde Match System
 - Status running
 - Running from Mitch's data
 - Now adding retrievals
 - Matching HIRS data and AIRS data

Current Tasks Continued

- Use of GPS data
 - Place data in match files with closely collocated radiosondes
 - Format is set but no data yet
 - Like to get more than 10 (15) US matches
 - Compare total water vapor and
 - Adjust the radiosonde or
 - Reject it
- We will place other data in our match file
 - The sooner we can details about a format, the better
 - Might be useful to look at our format on our web site

Early Validation for AIRS

- Capabilities on NESDIS match files
 - Current
 - Radiosondes initial and final versions
 - Upper water vapor now present
 - Hourly surface observations
 - ACARS/ARINC
 - Buoys
 - NCEP forecast
 - Available but not implemented
 - GPS
 - Ozone
 - ARM/CART
 - Other validation data

Early Validation for AIRS

- Radiance Adjustments have been tested in many configurations
 - Scientific Simulations Reduces Errors to noise levels
 - System simulations Sample is not sufficient for science
 - Approach relax the threshold and accept cloudy
 - Allows data flow to be tested
 - Complete the radiosonde
 - Use team retrieval test the full system
 - Use regression stable
 - Use forecast causes a bias if used with radiosondes as truth

Tuning test with cloudy data – team retrieval used to complete the radiosonde

Tuning Test with cloudy data - Regression Retrieval used to complete the radiosonde

Early Validation for AIRS

Data Sources

- AIRS granules pull data and convert 1 week online
 - Capability start routine runs
- AIRS matches pull data and put into NESDIS match system
 - Capability start routine runs several months (6) online
- Mitch's gridded data
- NCEP forecast
- Complete state specification complete the radiosonde
 - Team retrieval
 - Regression retrieval
 - forecast
- ECMWF forecast ?????

Early Validation for AIRS

- Early tests
 - Extremes test
 - Tuning test
 - Mirror coating test
 - Covariance test Eigenvector test
 - Scan bias test
 - Noise test
 - Sun Glint test
 - Spectral stability test

Early Evaluations

• Extremes test

- Purpose Look for drifts in the data with time
- Average the warmest 2% of observations and track with time
- Average the coldest 2% of observations and track with time

Tuning test

- Purpose Get an early look at tuning performance
- Perform early tuning based on differences from NCEP model
- Track with time stability
- Compare with RAOB values when a sample is available
- Compare tunings based on NCEP and ECMWF values

Minimum temperatures for sounding channels

Minimum Temperature (K)

Maximum temperatures (K) for sounding channels

Maximum temperature (K) for shortwave channels

Early Evaluations Continued

Mirror Coating Test

- Purpose Look for angle dependent problems caused by coatings
 - Scan mirror coatings polarizes the signal and rotates relative to the instrument
- Cold clouds can reveal a scan bias caused by a mirror coating
- All but the most opaque channels see the same temperature
- Select areas with low temperatures, 210 (ie. High clouds)
- Calculate the expected value by averaging unaffected channels
 - Coldest values are the least affected mirror is warmer
- Plot the channel difference from the average of unaffected channels
- Look at deviations as a function of scan position
- Calculate eigenvectors of the differences
- If patterns exist
 - Use the measured mirror temperature to calculate emissivities

Early Evaluations Continued

Covariance Test

- Purpose look for systematic differences between calculated & observed
- The Covariances of measured and calculated radiances should agree
- Select clear areas and calculate the covariance of the measured radiances
- Using the forecast values, calculate radiances and then the covariance
- Difference the covariances and display the result
- If differences occur, investigate the cause

• Eigenvector Test – Equivalent

- Calculate eigenvectors from clear data
- Use to dominant ones to calculate PCS's from measured data
- Multiply by the eigenvectors to reconstruct the measurements
- Difference the measured and reconstructed values
- Map the differences for channels with large departures

Correlation Matrix for Observed BT's

Early Evaluations Continued

Scan Bias Test

- Purpose look for scan dependent biases
- Select clear observations
- Calculate radiances from the forecast/analysis using bias adjustment
- Calculate radiances from the forecast/analysis without the bias adjustment
- Difference the measured and clear values
- Map the differences for each scan angle
- Average over latitude bands and the globe for each scan angle
- Compare the results

Noise Test

- Purpose Establish the noise level in orbit
- Compare adjacent clear spots to get the noise
- Subtract along track values and cross track values separately
- Calculate the mean and rms to get noise values
 - Note along track mean should be zero

Average Temperatures (K) with scan angle and Channel

RMS Temperature (K) with scan angle and channel

Early evaluations Continued

Sun Glint Test

- Purpose Establish the angles & channels affected by reflected solar radiation
- Use clear data at night (SZA>96) to create coefficients to predict shortwave channels from longwave channels
- Apply the coefficients to nighttime data over oceans to establish the error level
- Apply the coefficients to daytime data over oceans to get solar effects
- Plot a typical orbit to get the expected value

• Step 2

- Get the forecast wind speed
- Plot the difference as a function of wind speed
- Do the same for land except for the wind speed

Early evaluations Continued

Spectral stability Test

- Purpose detect shifts in frequency
- Select pairs of channels that are on opposite sides of a spectral line and have about the same radiance – one pair for each module
- Calculate the expected temperature difference over a tropical atmosphere
- Use clear data (not necessary for high peaking channels) to calculate the difference
- Compare the expected and measured values
- Plot the difference as a function of time
- Alternative
 - Calculate principal component scores for measured and calculated values
 - Look at the differences

Channel Pair Temperature Difference (K) with Frequency Shift – profiles are ranked by surface temperature

Early Validation for AIRS

• Early tests

Extremes test done

Tuning testdone

Mirror coating test
 done but no simulated test data

Covariance test – Eigenvector test – done

Scan bias test need real data

Noise test
 need real data

Sun Glint test
 done but no simulated test data

Spectral stability test
 have channels selected

OPTRAN coefficients

- Generate coefficients for AIRS use by NCEP
 - Two runs have been made
 - Tom Kleespies will be shown
 - Normal OPTRAN
 - Yoshihiko Tahara talk later?
 - Reduced number of coefficients via vertical polynomial expansion
 - Kleespies
 - Numerical issues at some wavelengths have been handled before
 - Yoshihiko
 - Numerical issues solved
- Other issues
 - Need a good set of profiles
 - 32 does not have full representation
 - 48 does not have a level profile
 - ECMWF is awkward different set of profiles for ozone

OPTRAN coefficients

- Other issues
 - Line-by_line or equivalent
 - kCARTA
 - Better results for most channels
 - Currently an issue for channels 3-5 with real HIRS data
 - May be due to something other than kCARTA
 - Is being investigated
 - Alternative LBLRTM
 - Safe approach is LBLRTM with 32 profiles
 - Would really like 48 profile set with level profiles

Average error (K) as a function of channel

RMS Error (K) as a function of Channel

Validation Plans

- A trial version is set up on a website
- Orbit-net.nesdis.noaa.gov/crad/ipo
- Capabilities
 - View matches with AIRS and HIRS
 - View ACARS reports
 - View monthly statistics TOVS up through NOAA 14
 - View data as a function of time, angle etc.
 - View the HDF format specification